如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。然后再简化代数式a+(n-1)b。例:4、10、16、22、28……,求第n位数。分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2 .如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。如增幅分别为3、5、7、9,说明增幅以同等幅度增加。此种数列第n位的数也有一种通用求法。基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。
增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8. (四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
2.数学规律法一
规律填空的意义实际上在于加强对于一般性的数列规律的熟悉,虽然它有很多解,但主要是培养你寻找数列一般规律和猜测数列通项的能力(即运用不完全归纳法的能力),以便于在碰到一些不好通过一般方法求通项的数列时,能够通过前几项快速准确地猜测到这个数列的通项公式,然后再用数学归纳法或反证法或其它方法加以证明,绕过正面的大山,快速地得到其通项公式.所以我觉得找规律填空还是有助于我们增强解一些有难度又有特点的数列的.我以前也不太懂这个,后来学多了,就很拿手了. 1,2,4,7,11,16,(22),(29),——相差为:1,2,3,4,5,6,…2,5,10,17,26,(37),(50),——相差为:3,5,7,9,…0,3,8,15,24,(35),(48),——相差为:3,5,7,9,…找规律填空:9-1=8,16-4=12,25-9=16,36-16=20,49-25=24.
找规律地类型简直数不清.有的是所给数字间有规律,有的是隔一个数字间有规律.还有的是相邻两个数字之间地差呈某种规律.规律可能有同加同减同乘一个数或一个数列,或者平方. 小学的找规律很简单,只有加或减以及乘除,不会有平方这种太过麻烦的解法,虽然有时候,碰巧在加减乘除中又有了平方. 中学的稍微难一些,又在平方的基础上加了次方,不过如果你好好学,还是很简单的.
3.数学规律法二
有理数的加法运算:同号两数来相加,绝对值加不变号。异号相加大减小,大数决定和符号。互为相反数求和,结果是零须记好。【注】“大”减“小”是指绝对值的大小。有理数的减法运算:减正等于加负,减负等于加正。有理数的乘法运算符号法:同号得正异号负,一项为零积是零。
合并同类项:说起合并同类项,法则千万不能忘,只求系数代数和,字母指数留原样。去、添括号法则:去括号或添括号,关键要看连接号。扩号前面是正号,去添括号不变号。括号前面是负号,去添括号都变号。解方程:已知未知闹分离,分离要靠移完成。移加变减减变加,移乘变除除变乘。
4.数学规律法三
熟悉习题中所涉及的内容,包括定义、公式、定理和规则。解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。解题是为阅读服务的,是检查你是否读懂了教科书,是否深刻理解了其中的概念、定理、公式和规则,能否利用这些概念、定理、公式和规则解决实际问题。解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。因此,我们在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这些基本内容,正确理解其涵义的本质,接着马上就做后面所配的练习,一刻也不要停留。
熟悉习题中所涉及到的以前学过的知识,以及与其他学科相关的知识。有时候,我们遇到一道不会做的习题,不是我们没有学会现在所要学会的内容,而是要用到过去已经学过的一个公式,而我们却记得不很清楚了;或是需用到一个特殊的定理,而我们却从未学过,这样就使解题速度大为降低。这时,我们应先补充一些必须补充的相关知识,弄清楚与题目相关的概念、公式或定理,然后再去解题,否则就是浪费时间,当然,解题速度就更无从谈起了。