如何训练初中生学生的数学思维?随着教学改革的深入发展,在数学教学中有目的、有计划、有步骤地培养学生的思维能力,是每个教师十分关心的问题。下面,朴新小编给大家带来培养学生思维的技巧。
重视操作,培养实际动手能力
―位教育家这样说过:“儿童的智慧就在他的手指尖上”。许多事实证明科学是动手“做”出来的。我们在学习数学的过程中,也要学会“做”数学,比如量身高,可以帮助我们理解米和厘米等长度单位的概念,对其有具体的感知;走一段路程,可以帮助我们正确理解“千米”的含义;称称一两块砖和一两枚硬币,可以帮助我们弄清“千克”和“克”的区别;
剪几个对等的三角形拼成长方形或平行四边形,又可让我们得出并掌握三角度面积的计算方法。总之,在动手操作的过程中,可以引发我们创造性地思维。在数学教学中教师要特别重视和发展学生的好奇心,让每一位学生养成爱想问题、问问题以及延伸问题的习惯,让所有的学生都知道自己有权利和能力去发现新问题,提出新见解。以下再对培养思维简单地谈一谈。
善于运用启发法和发现法,启发学生思维的积极性
一个出色的教师会懂得针对不同的学生能力差异,采取不同适合学生的教学方式。面对同一道数学题,用什么样的语言表达让学生尽快地接受。
如果起题意不懂,便可采用启发、举例的方法让学生接受,发现突破口,用通俗简易的手势或图形来化繁为简。这样可以增加学生的兴趣和对思维的积极性。使学生在掌握教师的方法下,通过发散性思维,使他们明白学习方法的重要性,从而产生爱动脑筋、思考问题的习惯。
2.如何培养学生数学思维与兴趣
加强直观教学,培养学习兴趣
在教学中教师单从提高语言表达能力和语言“直观”上下功夫,还是远远不够的。要解决数学知识的抽象性与形象性的矛盾,还应该充分利用直观教学的各种手段。“直观”具有看得见,摸得着的优点,“直观”有时能直接说明问题,有时能帮助理解问题,给学生留下深刻的印象,使学生从学习中得到无穷的乐趣。由直观感知上升到抽象的理解。有了这个基础求一个数比另一个数多(少)多少的教学就根顺利了,体现了“直观”教学的优越性。
观察能力的培养,学习兴趣的产生
观察能力是认识事物,增长知识的重要能力,是智力因素构成的重要部分。在小学数学教学中必须引导学生掌握基本的观察方法,学会在观察时透过事物表象,抓住本质,发现规律,达到不断获取知识,培养能力,发展智力的目的。我认为人们对知识的认识和积累都是通过观察实践而得到的。没有观察就没有丰富的想象力,也不可能有正确的推理、概括和创造性,所以有意识地安排学生去观察思考,逐步培养学生的观察能力,发展学生的想象力。既增加了数学的趣味性,又创造了良好的课堂气氛。
重视操作,培养实际动手能力
―位教育家这样说过:“儿童的智慧就在他的手指尖上”。许多事实证明科学是动手“做”出来的。我们在学习数学的过程中,也要学会“做”数学,比如量身高,可以帮助我们理解米和厘米等长度单位的概念,对其有具体的感知;走一段路程,可以帮助我们正确理解“千米”的含义;称称一两块砖和一两枚硬币,可以帮助我们弄清“千克”和“克”的区别;剪几个对等的三角形拼成长方形或平行四边形,又可让我们得出并掌握三角度面积的计算方法。总之,在动手操作的过程中,可以引发我们创造性地思维。
3.如何培养几种思维能力
(一)抽象概括能力
抽象概括能力是从事物关系和描述中总结出具有特定关系和结构的一般关系模型,这就是要做好数学关系的模型化。那么,应该如何培养这种能力呢?在日常的学习中就可以做到。比如,在教学过程中,先讲一道例题,学生都能理解以后,再给他们几道类似的题让他们做,这几道题不要太难,例题那个难度就好。等学生做完之后,让他们思考几个问题,比如,他们是用了哪个知识点做出来的,在解题过程中用了什么样的数学方法,这几道题有什么相似之处,能不能总结出这一类题的解题方法。思考和总结是培养抽象概括能力的关键,多思考有利于这种能力的培养。
(二)发散思维能力
前文也说过,一道题不可能只有一种解题方法,多想几种解题方法,这个过程就是在运用发散思维。在学习过程中,要克服定势思维,培养学生多方位、多角度地去思考问题,寻求题目的答案。老师在教学过程中,应该注重克服定势思维,培养学生思维的灵活性。比如,在定义、法则方面做一些变形的练习,鼓励学生多设想、多思考,让思维活跃起来,尽可能想到一切可能。久而久之,就能习惯性地多思考、多推敲,这就是发散思维的培养。开阔学生视野,使学生养成发散思维的习惯,就要让学生多进行相互讨论,集思广益。有句话是这样说的,我们互相交换苹果,得到的还是一个苹果,互相交换思想,得到的却是两种思想,因此交流在学习中很重要。
(三)逆向思维能力
逆向思维,顾名思义,就是从反面去思考解决问题的方法。比如,拿到一道数学题目,根据它所要求证的问题,来寻找求证它的条件,一步步地往上推,同时要和题目给的条件相符合,就能解出这道题了,这就是根据结果求条件,最终把过程调整过来就可以。因此,在解决问题上,要多鼓励学生采用逆向思维方法,比如说证明题中的反证法就是用了这个数学方法,这种逆向思维多用于证明题,多练习证明题,有利于培养这种逆向思维,反证法就说明了这一点。同时,加强公式逆向运用也有利于思维能力的提高,在学不等式的性质时会经常用到。
4.初中数学思维的方法
通过范例和解题教学培养思维能力
在教学中,一方面通过解题和反思活动,从具体数学问题和范例中总结归纳解题方法,并提炼和抽象成数学思想;另一方面在解题过程中,充分发挥数学思想方法对发现解题途径的定向,联想和转化功能,举一反三,触类旁通,以数学思想观点为指导,灵活运用数学知识和方法分析问题、解决问题。范例教学通过选择具有典型性、启发性的例题和练习进行。要注意设计具有探索性的范例和能从中抽象一般和特殊规律的范例来进行教学,还要通过解题以后的反思,优化解题过程,总结解题经验,提炼数学思想方法。
数学思想方法的培养是当今数学教育改革的发展方向,全国各地报纸杂志的有关论述比比皆是。仔细研读,发现绝大部分文章均有一种倾向,只要提到创造思维,无不批判定式思维在创造思维形成过程中的阻碍作用,无不强调克服和消除定式思维的消极影响,而对定式思维的积极作用一般都是一带而过或一字不提。但我认为这种是肤浅的、片面的,对加强双基教学有一定的危害性。
注重灵活多样的开展教学
当今的社会是一个多媒体的时代,与过去不同,教学更加方便了,老师完全可以利用多媒体技术来改变自己传统的教学模式,注重灵活多样的开展教学,因为数学思维能力离不开科学、灵活的教学方法的运用,那么如何开展灵活的教学方式呢?数学教学过程中的导入出新很重要,也可以被理解为引人入胜教学法。
如通过叙述故事、利用矛盾、巧用道具等别具一格的教学方法,会让学生眼前一亮,使学生早早地进入学习状态。多变的教学方法,同时也有利于培养数学思维能力,教学方法都活了,学生的思维能不活跃吗。如果只是一味地循规蹈矩,会让学生的思维呆滞。因此,必须用灵活多样的教学方法,来培养学生的数学思维能力。