如果a>b,那么下列各式中一定正确的是A.a2>b2B.a2<b2C.a-2>b-2D.-2a>-2b

711 篇文章
2024-07-18

题文

如果a>b,那么下列各式中一定正确的是( )A.a2>b2B.a2<b2C.a-2>b-2D.-2a>-2b

题型:未知 难度:其他题型

答案

A.如果a>b,那么a2>b2,根据等式性质得出,若两数异号不成立,故此选项错误;
B.如果a>b,那么a2<b2,根据等式性质得出,若两数同号不成立,故此选项错误;
C.如果a>b,那么a-2>b-2,根据等式性质得出,故此选项正确;
D.如果a>b,那么-2a>-2b,根据等式性质得出,不等式两边乘(或除以)同一个负数,不等号的方向改变.故此选项错误;
故选:C.

点击查看不等式的性质知识点讲解,巩固学习

解析

该题暂无解析

考点

据学分高考专家说,试题“如果a>b,那么下列各式中一定正确的是(.....”主要考查你对 [不等式的性质 ]考点的理解。

不等式的性质

不等式的性质:
1、不等式的基本性质:
不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变。即如果a>b,那么a±c>b±c。
不等式性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变。即如果a>b,c>0,那么ac>bc(或
)。
不等式性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向改变。即如果a>b,c<0,那么ac2、不等式的互逆性:若a>b,则b3、不等式的传递性:若a>b,b>c,则a>c。

不等式的性质:
①如果x>y,那么yy;(对称性)
②如果x>y,y>z;那么x>z;(传递性)
③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)
④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz⑤如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z⑥如果x>y,m>n,那么x+m>y+n;(充分不必要条件)
⑦如果x>y>0,m>n>0,那么xm>yn;
⑧如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂 或者说,不等式的基本性质有:
①对称性;
②传递性:
③加法单调性:即同向不等式可加性:
④乘法单调性:
⑤同向正值不等式可乘性:
⑥正值不等式可乘方:
⑦正值不等式可开方:
⑧倒数法则。

不等式的基本性质和等式的基本性质的异同:
①相同点:无论是等式还是不等式,都可以在它的两边加(或减)同一个数或同一个整式;
②不同点:对于等式来说,在等式的两边乘(或除以)同一个正数(或同一个负数),等式仍然成立,但是对于不等式来说,却不大一样,在不等式的两边乘(或除以)同一个正数,不等号的方向不变,而在不等式的两边乘(或除以)同一个负数,不等号要改变方向。

原理
①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。
②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)③如果不等式F(x)0,那么不等式F(x)H(x)G(x)同解。
④不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)<0与不等式同解。

温馨提示:本文【如果a>b,那么下列各式中一定正确的是A.a2>b2B.a2<b2C.a-2>b-2D.-2a>-2b】由作者张张知识提供。该文观点仅代表作者本人,学分高考系信息发布平台,仅提供信息存储空间服务,若存在侵权问题,请及时联系管理员或作者进行删除。
上一篇 歌曲《春天的故事》歌
上一篇 2010年上海世博会上,
相关推荐
热门资讯
  1. 1 31省区市新增本土确诊37例(全国疫情最新报
  2. 2 向上级请求批准的请示范文(关于请求同意的
  3. 3 2022国考今起报名(明年国考今起报名时间公
  4. 4 31省区市新增本土确诊13例(全国疫情新增最
  5. 5 带福字的吉祥语六个字(关于福禄寿喜财的成
  6. 6 有关地理知识的古诗词
  7. 7 入则孝全文带拼音加翻译(弟子规入则孝篇原
  8. 8 有关中秋节的诗句硬笔书法
  9. 9 关于愁的诗句有哪些(表达愁的诗句大全)
  10. 10 鬼谷子本经阴符七术(阴符经的惊天秘密)