题文
阅读下面的材料并完成填空:
你能比较20052006与20062005的大小吗?为了解决这个问题,先把问题一般化.即比较nn+1与(n+1)n的大小(整数n≥1).然后,从分析n=1,n=2,n=3,…这些简单情形入手,从中发现规律,经过归纳、猜想,得出结论.
(1)通过计算,比较下列①到⑦各组中2个数的大小?
①1221②2332③3443;
⑤4554⑥5665⑦6776…
(2)从第(1)小题的结果归纳,可以猜想nn+1与(n+1)n的大小关系是______.
(3)根据上面归纳猜想得到的一般结论,可以得到20052006______20062005(填“>”、“=”或“<”).
题型:未知 难度:其他题型
答案
(1)根据计算可得:①12<21②23=8<32=9③34>43;⑤45>54⑥56>65⑦67>76;
(2)观察可得:n≤2,nn+1<(n+1)n,n≥3,nn+1>(n+1)n;
(3)因为2005≥3,即可以得到20052006>20062005.
解析
该题暂无解析
考点
据学分高考专家说,试题“阅读下面的材料并完成填空:你能比较200.....”主要考查你对 [比较有理数的大小 ]考点的理解。
比较有理数的大小
比较有理数大小的方法:
有理数是整数和分数的统称,一切有理数都可以化成分数的形式。
数轴法:
1、在数轴上表示的两个数,右边的总比左边的数大。
2、正数都大于零,负数都小于零,正数大于负数。
绝对值法:
1、两个正数比较大小,绝对值大的数大;
2、两个负数比较大小,绝对值大的数反而小。
差值法:
设a、b为任意两有理数,两数做差,若a-b>0,则a>b ; 若a-b<0则a商值比较法:
设a、b为任意两有理数,两数做商,若a/b>1,则a>b;若a/b<1,则a