如图,AC是▱ABCD的一条对角线,过AC中点O的直线分别交AD,BC于点E,F.
(1)求证:△AOE≌△COF;
(2)当EF与AC满足什么条件时,四边形AFCE是菱形?并说明理由.
∴四边形AFCE是菱形.
(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠EAO=∠FCO,
∵O是OA的中点,
∴OA=OC,
在△AOE和△COF中,,
∴△AOE≌△COF(ASA);
(2)解:EF⊥AC时,四边形AFCE是菱形;理由如下:
∵△AOE≌△COF,
∴AE=CF,
∵AE∥CF,
∴四边形AFCE是平行四边形,
∵EF⊥AC,