如图,一次函数y=kx+b与反比例函数y=的图象交于A(1,4),B(4,n)两点.
(1)求反比例函数的解析式;
(2)求一次函数的解析式;
(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.
解:(1)把A(1,4)代入y=得:m=4,
∴反比例函数的解析式为:y=;
(2)把B(4,n)代入y=得:n=1,
∴B(4,1),
把A(1,4),B(4,1)代入y=kx+b得,
∴,
∴一次函数的解析式为:y=﹣x+5;
(3)作点B关于x轴的对称点B′,连接AB′交x轴于P,
则AB′的长度就是PA+PB的最小值,
由作图知,B′(4,﹣1),
∴直线AB′的解析式为:y=﹣x+,
当y=0时,x=,
∴P(,0).