2024考研线性代数:线性代数之线性方程组

高考君
711 篇文章
2023-02-10

线性方程组是线性代数的重要考点,也是很多考生的难点。小编整理了关于2021考研线性代数:线性代数之线性方程组的文章,希望能给同学们的复习备考带来帮助~

常考题型:第一,齐次线性方程组有无零解和非齐次线性方程组是否有解的判定。对于齐次线性方程组,当方程组的方程个数和未知量的个数不等时,可以按照系数矩阵的秩和未知量个数的大小关系来判定,还可以利用系数矩阵的列向量组是否相关来判定;当方程组的方程个数和未知量个数相同时,可以利用系数行列式与零的大小关系来判定,还可以利用系数矩阵有无零特征值来判定;对于非齐次线性方程组,可以利用系数矩阵的秩和增广矩阵的秩是否相等即有关矛盾方程来判定,还可以从一个向量可否由一向量组线性表出来判定;当方程个数和未知量个数相等时,可以利用系数行列式是否为零来判定非齐次线性方程组的唯一解情况;今年的考题就体现了这种思想。

第二,齐次线性方程组的非零解的结构和非齐次线性方程组解的的无穷多解的结构问题。如果齐次线性方程组有无穷多个非零解时,其通解是由其基础解系来表示的;如果非齐次线性方程组有无穷多解时,其通解是由对应的齐次线性方程组和通解加本身一个特解所构成;

第三,齐次线性方程组的基础解系的求解与证明。利用系数矩阵的极大线性无关组的内容进行分析;

第四,齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。如果方程组的方程个数和未知量个数不相等时,只能对其系数矩阵或增广矩阵进行初等行变换,化为阶梯形矩阵来进行讨论;如果方程组的方程个数和未知量个数相同时,初等行变换和行列式可以结合起来一起进行分析和讨论;

第五,两个方程组的公共解、通解问题。这部分有固定解法,考生要多加练习。

由于这部分常以大题出现,分值较高,需要考生提高警惕,在理解的基础上多做题。

温馨提示:本文【2024考研线性代数:线性代数之线性方程组】由作者高考君提供。该文观点仅代表作者本人,学分高考系信息发布平台,仅提供信息存储空间服务,若存在侵权问题,请及时联系管理员或作者进行删除。
上一篇 湖南师范大学外国语学
上一篇 非定向硕士研究生什么
相关推荐
热门资讯
  1. 1 山东建筑大学2024年硕士研究生招生简章
  2. 2 景德镇陶瓷大学2024硕士研究生招生简章
  3. 3 长江大学2024硕士研究生招生简章
  4. 4 2024考研英语阅读技巧中的“互通有无”
  5. 5 2024年江苏南京师范大学(3208)报考点报名须
  6. 6 2024年南京水利科学研究院招收攻读硕士学位
  7. 7 2024考研:临近考试可还是不能全部投入该怎
  8. 8 2024江西学院联合培养法律专业学位警务方向
  9. 9 2024考研:9月29日国内时事热点
  10. 10 清华大学研究生专业介绍:生物信息学